A community for teacher-librarians and other educators

Librarians without borders: For those of us who connect, teach, share, and lead in new information landscapes.

Don't worry! A slight Ning redirect!

Hi Friends,

Just wanted to let you know that our Ning is going through a little refresh.  Your community will continue, but we are refocusing a bit to incorporate more global participation and the building or collaborative global projects.

Please also feel free to join our companion Google+ Community: GlobalTL.

Start thinking of how we might connect to each others and to our classroom teacher partners as librarians without borders!


TL Guides: for all of us

Please visit and volunteer to help me build TLGuides

LibGuides/Springshare has given us a subscription to build for the profession and I would love just a few good editors.

Write me?


Mighty Little Librarian

Makerspace: Crafting Supplies

One of my goals with our library makerspace is to draw in as many students as possible through a wide range of creative activities. Making a selection of crafting supplies available is a great way to do this. I’ve always … Continue reading

Makey Makey

When the boxes started coming in for my first Makerspace DonorsChoose grant, I was so excited to unpack the three Makey Makey kits that we received! In anticipation of these supplies coming in, I showed some of my students this … Continue reading

The Digital Diva

SLJ News

ALA TechSource

3D Scanning

Editor's Note: This post is one of a series excerpted from Jason Griffey's Library Technology Report "3D Printers for Libraries."

In addition to creating “born digital” objects, you can digitize existing real-world objects to make them printable. Of the various methods of 3D scanning, as it's usually called, I’ll cover my favorite three possibilities at the moment. Like much of 3D printing, the technology for scanning is changing quickly.

Still a rough art, no capture method in 3D scanning reproduces exactly the object. Some types of scanning technology have issues with separating the background from object or even factors like going from a very dark to a very light surface. Most 3D scans will require some finessing in order to get good results from the resultant print. With a bit of work, though, you can get really interesting and useful objects from a scanner.

Makerbot Digitizer
Makerbot Industries has released a desktop 3D scanner called the Digitizer. Roughly the size of a turntable, it scans objects up to 8 inches in diameter. It uses a camera and lasers to “draw” the edges of an object as it is slowly turned around a single point. The Digitizer is also linked to the Makerbot Desktop software. If you have a Makerbot printer, you can set up the Digitizer + Replicator to act like a copy machine, placing an object on the Digitizer platform and then feeding the file directly to the Replicator.

The Digitizer is limited in that it only collects volumetric information and can’t capture surface colors. Other scanners can, and while the most common FDM printers available now can’t do full color, higher end printers can. It may be a situation where scanning things and expecting them to be archival quality will become more realistic as the scanners get better. The Digitizer now sells for $799.

3D Systems Sense
Sense by 3D systems is a handheld scanner that uses proprietary methods (but include at least camera and IR sensors) to create 3D scans of objects from 8 inches to 118 inches. It’s a far more interesting and overall more powerful scanner than the Digitizer in that it allows you to scan absolutely arbitrary objects, rather than being limited to things that will fit onto a turntable. You can scan freestanding objects, people, parts of rooms, nearly anything.

The software for the system originally ran only on Windows PCs, but they recently released a version for Macintosh systems. They also showed off a version of the Sense that worked with the iPad at CES 2014, which would be an excellent truly portable solution.

Sense also has price going for it. It’s only $399 for the basic Sense unit, and for the power that it affords you, it’s a very good deal.

123D Catch
The last of the 3D scanning gadgets that I’ll cover actually isn’t a gadget at all. The 123D Catch is one of the coolest options for capturing a physical object. The software and app-based option uses standard photographs to recreate objects through the use of very clever and complicated math. You simply take a series of photos around the object, changing the position each time, until you circumscribe the object in roughly 15 degree arcs. The software then interpolates the object from the photos, using the shadows and highlights to get depth from the series of photos.

The 123D Catch is available in three forms: free as a universal iOS app that allows you to take pics in the app itself; as a Windows app that allows you to load photos into it directly from another source (a DSLR or other digital camera); or as a web app that does many of the same things as the PC app, allowing you to upload photos taken elsewhere and convert them to a 3D model.

All of these are free to use, in limited ways. The free version is licensed only for noncommercial uses of the models. It’s borderline magic, especially as a freely available service, what 123D Catch can do with static 2D photographs. The key advantage of this is that you can use it in places that would look at you oddly if you brought in a dedicated 3D scanner, but don’t blink if you take a series of photographs. Think about 123D Catch at next museum or art gallery you visit, and take a few extra shots and give it a try.

3D Printing Software

Editor's Note: This is the fifth of a series of posts excerpted from Jason Griffey's Library Technology Report "3D Printers for Libraries."

Let’s start with a high-level overview of the process FDM printers follow, which is similar regardless of printer. You start with a digital model of your object, in STL format, either created with one of the  software packages described below or downloaded from a website. You open the file in a plating and slicing program, like Makerware, Repetier host, ReplicatorG, or Pronterface. The program will show how the object sits on the build platform, and you can manipulate it to some degree (scale it up or down, rotate it for a better fit). You will then choose a number of settings for slicing, things like layer height, infill, and extrusion temperature. Once you have your settings, you will either print directly from the computer over USB or export the STL file as a gcode file and move it to the printer on an SD card. The STL will be sliced into hundreds of layers, and the 3D printer will get instructions on how to build it one layer and a time.

The other half of the 3D printing process is the software, which is of two types: one prepares your designed files for printing (slicing and plating software); the other is design software for creating the 3D object that you wish to print. We'll cover design software here.

The two filetype standards for 3D printing are .stl and .obj. Obj files are typically those used in high-end printing, and include features like color information that are superfluous for the sorts of consumer-level printing that libraries are likely to offer. For FDM and STL printing, the needed output file is a .stl format. This is the equivalent of needing a .docx file if you want to work in the most recent version of word, or a .pdf file for cross-platform document consumption. The .stl file is a very simple description, in either ascii or binary, of the external shell of a 3D object in terms of triangles. Nearly every 3D modeling software that you might use will export to .stl, it is that common a file format in 3D design.

One of the things that has really helped the 3D printing business take off is the availability of freely-sharable .stl models of just about anything you can think up. The most popular online library of 3D models is Thingiverse, a freely available resource owned by Makerbot Industries. Thingiverse allows anyone who has created a 3D model to upload it to the website and make it available for download. It’s open access 3D objects, in effect. Thingiverse is the perfect first-stop for anyone who has a 3D printer, as it will give you hundreds of things to print, from toys to tools. The downloadable files have easy to follow instructions for printing as necessary and clearly labeled intellectual property rights.

As libraries start creating and sharing objects, Thingiverse would be the logical place to store them, especially for findability by the 3D community. I’m hopeful that over time we’ll be able to find shelf brackets and more there.

I’m going to sequence this recommendation area for 3D design software from beginner to expert levels. With far more options for design software than I can cover here, this section, divided by level of expertise, is designed to give you a solid starting point. I will also point out a couple of options for the creation of STL files from photographs.

My favorite piece of software for the beginning in 3D design is a website called Tinkercad. Tinkercad is a freely-available web application for creating of 3D models by using simple shapes to build up more complicated ones. You must create an account, but the free account (at least currently) gives you unlimited models online. The free account’s only real limitation is the requirement that your creations be Creative Commons Attribution-Share Alike 3.0 license. Paid accounts get the ability to choose among all of the available Creative Commons licenses as well as the ability to control commercial distribution of their models.

Tinkercad is entirely browser-based and runs on any modern web browser, so it’s trivial to run on nearly any computer. With a well-done introductory tutorial for beginners, its method of building with simple basic shapes (cube, sphere, pyramid) allows people who are new to 3D modelling to start slowly, but still gain understanding of basic concepts. It also clearly labels the size of objects for output and allows for either solids or holes of any arbitrary shape.

Tinkercad supports importing other STL files, which means that it’s possible to download an STL from Thingiverse, import it into Tinkercad, and modify it. Though you can’t customize as robustly as with full 3D modeling software, for first steps towards creativity in the 3D realm, Tinkercad is a fantastic tool.

Similar to Tinkercad and also browser based is 3DTin. I find it less intuitive than Tinkercad, but it has some tools (camera movement, for example) that might make it a useful answer for a problem you have in 3D creation.

A step up from Tinkercad is SketchUp, software that was formerly owned by Google but sold off in 2012 to Trimble Navigation. There are two version of SketchUp available, SketchUp Make and SketchUp Pro. SketchUp Make is freely available for noncommercial use and has every capability that I can imagine a library or patron needing. SketchUp Pro is designed for professional architects and others who need very professional level controls and output.

SketchUp is ostensibly designed for architectural renderings—building interiors and exteriors, landscape design, that sort of thing. Like Tinkercad, it deals in just a few basic shapes and controls and flexible in its design uses. As a bonus, the SketchUp website has dozens of learning resources that you can use to both learn and teach with.

SketchUp doesn’t natively export to STL for 3D printing, but with an easily installed plugin you can export or import any STL file. As Google Earth and Google Maps’ primary tool for creating buildings, Sketchup is particularly handy if that’s your interest. SketchUp. It maintains a 3D warehouse of buildings and objects that can be easily opened and printed, including pretty much every famous building or sculpture in the world. Want a copy of the Taj Mahal on your desk? Not problem with SketchUp and a 3D printer. Ditto for the Empire State Building, the Arc de Triumph, or the Tennessee Aquarium. All of those are available and already modeled for your use.

Another of the free tools is Blender. Blender is an open source 3D computer graphics program that is used not only for basic 3D model creation but full animation and movie making. Of the software that I’ve mentioned, if Tinkercad is a moped, and SketchUp is a motorcycle, then Blender is a Saturn 5 rocket. It is indescribably more complex than either of the other tools to such a degree that I would really only recommend it for people who have previous experience with professional-level 3D tools.

With that caveat, it is a fully professional level tool that is capable of creating completely realized 3D photorealistic models. And it’s free. This combination means that there’s little reason not to at least play with it, or have it available if a patron wants to use it. It is worth considering whether or not you will be able to offer assistance to your patrons using Blender, because for most libraries the answer would be no. I’m not saying that’s a bad thing, only that you should be aware of the complexity of the program.

The last of the free tools I suggest taking a look at is OpenSCAD, an open source CAD editor and also a professional tool. Whereas Blender’s strength is in the artistic and creative, OpenSCAD’s strength is in the mechanical and engineering aspects of 3D modeling. If you want to model a turbine impeller or a structural support, OpenSCAD is likely your tool. Much like Blender, however, it is definitively a professional tool, requiring serious research and effort to get into.

Most of the commercial tools for 3D model creation are tied heavily to specific professions. It’s likely that if your library needs them, you’ll already know it because of local demand. Academic libraries specifically may need to pay close attention to the areas they are serving. Classes that use AutoCAD are unlikely to also teach Maya software, but either may be important to your patrons.

Not only FDM: Other Types of 3D Printing

Editor's Note: This is the fourth of a series of posts excerpted from Jason Griffey's Library Technology Report "3D Printers for Libraries."

As noted in earlier posts in the series, FDM (fused depostion modeling) printing is by far the most common inexpensive method of 3D printing. In this post, we’ll look at alternatives.

We are starting to see stereolithography (SLA) printing move downmarket into the affordable-for-libraries zone. I’m aware of a couple of libraries that have already purchased stereolithography printers.

SLA involves a light-sensitive resin and lasers. Liquid resin is contained in the body of the printer, with a build plate that moves up and down inside the resin. The resin solidifies when exposed to a specific wavelength of light, usually in the UV spectrum, and the printer has a laser or lasers tuned to that specific wavelength. The build plate starts near the top of the resin, and the lasers sweep across, solidifying the resin in the appropriate areas. The build plate then lowers, and the lasers repeat their sweep, building layer after layer, one after the other as the object is built. You can also have this process occur upside down, as in the FormLabs Form 1 printer, where the build plate is actually above the resin, and as layers are added it pulls the completed layer out of the resin.

Form 1 printer

SLA printing has several advantages over FDM. Because the print is always encased in liquid resin during the process, it is much more forgiving as to geometry of design. Not completely-- there still has to be some connection to the base layer. You couldn’t print a “floating” horizontal piece, for instance. But in general, the resin provides substantially more support for designs than those available from FDM printers. The other major advantage is that the detail level is limited by the crystallization of the liquid and the size of the lasers, which means that you can have very fine details in an SLA print. It’s possible to achieve .025mm (25 microns) layer heights with SLA prints.

Stereolithography printing has its limitations. The first is that the resin is only available in a very limited number of colors, generally a clear or translucent material and white. When compared to the rainbow of colors available for FDM printing with ABS or PLA, it feels limiting. The second, and far more worrisome, is that most vendors of this type of printer manufacture their own resin. The printers are designed to tune the wavelength of the lasers to the specific resin they sell, thus making it very difficult for anyone to compete with them on consumables for the printer. This would be the equivalent of buying a printer from HP, and having to then buy paper and toner from them as well in order to use the printer.

Small SLA printers are just beginning to hit the market, available in the $2,500-3,500 range. The consumable for printing, the photosensitive resin, is more expensive than filament for FDM printing as well. The most popular of consumer-grade SLA printers, the FormLabs Form 1, has resin that sells for $149 per liter.

Selective Laser Sintering
Simultaneously the most flexible and the most expensive type of 3D printing commonly used, selective laser sintering (SLS) printing is similar to stereolithography in that it uses lasers to solidify a loose substrate. In SLS printing, the printing substrate is a powder, and the printers use high-energy lasers, rather than UV. The high-energy lasers selectively fuse sections of a powder together, a new layer of powder is deposited on top of the sintered layer as the entire print bed drops, and the lasers do another pass, fusing the single-layer of powder to the already solid layer below. Thus prints are completed layer by layer, exactly as in the other printing technologies that we covered, except the end product is a solid object that’s been drawn by lasers, encased in all of the powder that wasn’t fused.

This method provides total support for the print in question, so nearly any imaginable geometry can be printed using SLS printing. It is also possible to use any material for SLS that is capable of being powdered and fused with heat, including thermoplastics, covered in my previous post, as well as steel, aluminum, titanium, and other metals and alloys. Prints produced in this way are very nearly as strong as solid-cast parts, which means that it’s possible to 3D print mechanical parts that are directly usable in engineering projects via SLS printing.

Layer height and resolution in SLS printing is completely determined by the resolution of the powder being fused, but is typically on par with SLA printing, averaging around .1mm layer heights. Another similar technology is electron beam melting (EBM) that uses high energy electron beams to melt powdered metals in order to produce 3D objects. The use of electron beams allows for even higher precision than lasers, allowing for up to .05mm layer heights, which is nearly unheard of by any other method.

Laminated Object Manufacturing
The last specific type of 3D printing that I’ll describe is, in my opinion, particularly clever. Laminated Object Manufacturing takes thin materials like paper or plastic sheets, cuts them to a specific shape, and then uses adhesive to glue one layer to the next. The most well known of these types of printers is manufactured by a company called MCor Technologies. Their printer uses normal, ordinary copy paper as its substrate, cutting one sheet at a time into the appropriate shape for the given layer, and then using paper glue to laminate the individual layers together. The high-end model of the MCor printer includes a full-color inkjet printhead inside, to allow for full color 3D prints to be created from very inexpensive raw materials; literally paper, ink, and glue.

Other 3D Printing Types
Numerous other 3D printing technologies are available, many that are patented and limited to a single company. For example, 3D Systems uses a type of 3D printing methodology that they call Color-Jet Printing (CJP) that uses two different materials that are combined using a sort of high-end inkjet printer in order to create the solid end-product. This patented process allows them to print in materials like food-grade ceramic. 3D Systems also makes a 3D printer that is capable of printing in sugar, called the ChefJet, and the high-end model, the ChefJet Pro can print edible 3D models in full color.

The Plastics of 3D Printing

Editor's Note: This is the third of a series of posts excerpted from Jason Griffey's Library Technology Report "3D Printers for Libraries."

The substrate for FDM printers are almost exclusively some form of thermoplastic that is delivered in an extruded wire-like form on a spool. It is usually called “filament” in the generic. The two common diameters for use in FDM printing are 1.75mm and 3mm, and a specific diameter is called for by the print head being used for the printer in question. A printer that uses 1.75mm diameter filament won’t be able to use 3mm without retrofitting the hardware for the difference, and vice versa. Slightly more common, the 1.75mm diameter is used by Makerbot Industries, the most popular manufacturer of FDM printers.

In later postss, when I write on the different printer types and manufacturers, I’ll note what type of filament they are capable of printing, because that turns out to be a major limitation and purchasing decision factor.


The original fused deposition printers almost exclusively used ABS (Acrylonitrile butadiene styrene) as their substrate for printing. ABS is nearly ideal from a material property point of view for rapid prototyping in plastic, as it’s strong, slightly flexible plastic, which extrudes cleanly at between 220° and 240° celsius.  ABS is the type of plastic used in Lego bricks, and is one of the most commonly used industrial/commercial plastics.

For FDM printing, ABS requires a heated print bed to ease the thermal shock for printing. Heating the print build plate aids the plastic in both adhering to the plate for stability, and in preventing cooling too quickly, which leads to thermal deformation, or a sort of curling separation. ABS is sensitive enough in this arena that many people who print ABS learned early on that enclosing the printer was a way to increase the stability of prints because it regulated the temperature around the printer. I soon discovered in my printing experiments with an early Makerbot printer (Replicator 1) that even a strong breeze blowing in the wrong place (across the print bed) could wreak havoc. Higher end printers will have an enclosed print area, while less expensive ones don’t.One of the advantages of ABS is that it dissolves in acetone. Acetone dissolves ABS completely, but used sparingly it can act as a glue to fuse two ABS printed pieces together permanently. Acetone is also used to make a “glue” for print beds, to help in making the print bed sticky for the initial printed layers. Acetone vapor is heavier than air, and some people have used this to build acetone vapor baths that act to smooth the edges of layers of an FDM ABS print.ABS has caught some bad press recently, as the potential effects of off-gassing of the heated plastic and microparticulate effects are studied. As a petroleum based plastic, ABS does produce a distinctive stink when printing. Fumes have been reported to cause headaches, and studies link ABS fumes to olfactory loss; one study that found ABS printing released high volumes of ultrafine particles that could be dangerous when inhaled. These are preliminary studies. Most haven’t been repeated, and the science is still rough on the health effects here. But if you need to print with ABS, it may be a good idea to take venting into account.

PLA (Polylactic acid) is the second most popular printing substrate for FDM printers. A bioplastic, PLA is made from corn, beets, or potatoes. It is compostable in commercial compost facilities (the heat and bacterial action isn’t high enough in home composting to break it down). It melts at a much lower temperature than ABS (150-160°C), but is typically extruded at a higher temperature, anywhere from 180-220°C depending on the PLA itself. Because of it’s lower temperature, it’s not suitable for uses that involve high temperatures and direct sunlight. PLA is also very different than ABS in term of fragility. Far more crystaline, PLA shatters or cracks more readily than ABS, whih instead will deform under pressure.

However, Makerbot and other major manufacturers are now starting to go with PLA as their primary printing plastic. PLA doesn’t require a heated bed for adhesion or thermal curling reasons, which lowers the price of the printers that use it. As well, it’s far more thermally stable during printing than ABS, and much less likely to warp or curl due to errant breezes. It is possible to reliably print PLA without needing to enclose your printer, which can be a huge benefit in many circumstances.

The other significant advantage is that PLA is far more pleasant when printing than ABS. Because it is a bioplastic, when heated it smells like waffles or syrup, and not like an oil spill. It also hasn’t been linked to any types of medical issues from being heated, although the study of all these plastics is young when it comes to 3d printing specifically.

One of the other advantages of PLA is that it’s available in dozens and dozens of colors, including both opaque and partially transparent, as well as a couple of colors of glow-in-the-dark. It also is available in a flexible form, which can produce prints that are almost rubber-like in consistency.

If you are printing in a library setting, I would suggest focusing on PLA. Between the reliability and the ease of working with it, it’s a far better choice than ABS for printing in a public space.

Other Filament
Once you get beyond ABS and PLA, you’re in the realm of specialized plastics that are used for specific properties rather than for general 3D printing. More of these appear every day, practically, but generally they fall into a couple of categories: dissolvable support material, specific material qualities that are needed, or non-plastic powder suspended in a thermoplastic resin. I’ll describe the most common of these below.

High Impact Polystyrene or HIPS is a plastic filament used for dissolvable support structures in FDM printers. It extrudes at around 235°C and has a set of material properties that make it similar to ABS. The main difference is that HIPS is completely soluble in a liquid hydrocarbon called limonene. This means that if you have an FDM printer with more than one print head, you can extrude ABS from one and HIPS as a support material from the other, and sit the final printed model in a bath of Limonene. The HIPS will dissolve away, leaving only the ABS behind, thus allowing for nearly impossible geometries to be printed, including moving ball bearings and more.

There are at least 4 types of nylon currently available for use in FDM printers: Nylon 618, Nylon 645, Nylon 680 and Nylon 910. These vary in their color from medium transparency to fully opaque white, and all are extraordinarily strong as compared to other FDM substrates. They are also very resistant to solvents and such, although they are dyeable with acid-based dyes for coloring.

Nylon as an FDM printing material is more expensive than PLA or ABS. The major reason for using them would be for specific material properties (resistance to specific chemicals) or due to the need for FDA approved materials, as both Nylon 680 and 910 are undergoing FDA approval for use, something rare in the 3D printer world.

T-Glase is a brand name for a filament composed of Polyethylene terephthalate. Of all 3D printer filaments, it is the most glass-like. Nearly transparent, especially at small sizes, it could easily be mistaken for glass. At larger sizes it is still very light-transmissive, if not fully transparent. T-Glase prints at around 221°C, on a heated bed, but is very stable and resistant to curling.

LayBrick & LayWood
Another type of printing material for FDM printers, these fall squarely in the experimental realm. They are made by a single manufacturer, and are both a sort of hybrid filament, with a powdered material being supported inside a resin. In the case of LayWood, fine wood particles are suspended in a thermoplastic resin, and in the case of LayBrick, it would be very finely crushed chalk and other minerals suspended in the resin.

Both LayBrick and LayWood have the interesting property of variability in appearance depending on the temperature at which they are printed. LayBrick can range from a very smooth, almost ceramic feel, to very rough sandstone, just by increasing the heat of extrusion. For very smooth, you print at a low temperature (165°C to 190°C) and then going up from their to around 210°C will render the printed part more and more rough. For LayWood, the difference is in the appearance of the final product. By increasing the temperature, you get darker and darker wood grain from the output, so you can actually vary the look from light to dark wood (or, if you have a printer that supports variable temperatures during a single print, you can get different colors in a single print by varying the temperature).

One of the risks, however, with both of these is that the filament isn’t uniform in construction, which means that it’s possible to clog your extruder if the nozzle opening is smaller than the particulate in the filament itself. FDM printers nozzle openings range from .35 to .5mm, and on the lower end of that, especially with the LayWood (organic particles are harder to ensure regular sizes than inorganic particulate) you risk clogging a nozzle. I know 3D printers that have clogged even at .4mm nozzle using LayWood. For printing these sorts of filaments, the larger the nozzle the better.

Still very experimental, polypropylene (PP) offers the possibility of food-grade 3D prints. Polypropylene should work with any FDM printer, at an extrusion temperature of 201°C and a heated print bed set to 90°C. It looks like PP is only really available in black.

Challenges with Fused Deposition Modeling
Most of the issues with FDM printing are related to the fact that it’s a very mechanical process, and tuning the printer is key. The most sensitive aspect of the process is the relationship between the extruder and the build plate. Because the printhead has to extrude an even layer of plastic onto the build plate, it’s necessary that the build plate be perfectly flat relative to the nozzle. If there is any warp or uneven-ness, you’ll get uneven attachment to the plate or other forms of print failure. This is the most common issue with FDM printing, especially with new operators. The first question to ask if a print fails is: “Is my build plate level/”

And prints will fail. FDM printing is a complicated mechanical process, and while you can tune a FDM printer to be very reliable, at some point you will have a failure and will come back to a print that looks like someone poured plastic spaghetti on your build plate. This is normal. Recalibrate, re-level, and try again.

Types of 3D Printing: Fused Deposition Modeling

Editor's Note: This is the second of a series of posts excerpted from Jason Griffey's Library Technology Report "3D Printers for Libraries."

Fused deposition modeling defines 3D printing for most people, as it’s by far the most common and in many ways the simplest technology for 3D printing. Fused deposition modeling uses a variety of plastics that fall within a range of melting points and that fuse when melted and resolidified, the most common of which are ABS (acrylonitrile butadiene styrene) and PLA (polylactic acid). We’ll discuss the specifics of these and other print substrates below.

The most common arrangement for an FDM printer is called Cartesian print engine, because it uses basic Cartesian coordinates (X,Y,Z) to create the printed objects. Even this general category comprises multiple types of printers and two are most common: the Makerbot style, which relies on a fixed plane X and Y print head and moveable Z print bed; and the so-called “RepRap” style, which relies on a fixed plane X axis, while the Y axis is controlled by moving the print bed itself and the Z axis is accomplished by moving the entirety of the print head system vertically upwards.


Makerbot Replicator (above)

RepRap Style Printer

 RepRap style 3-D Printer (above). Photo by John Abella.

Alternatively, with a Delta printer, a significantly different geometry for a FDM printer,  the printhead is suspended from 3 arms that are controlled along vertical supports, while the print bed is completely stationary. This arrangement allows the printhead to “float” above the print bed and be located at any physical point in 3 dimensions simply by altering the relation of each of the three arms to the other. This is the same sort of control geometry in the flying cameras used in NFL games, applied to a robot.

SeeMeCNC's Rostock Max (above), a delta printer.

Regardless of the control geometry used, the method of printing is the same for both types of FDM printers. The printhead for both is a metal tube with a heating element and thermistor to control the temperature, and the plastic substrate is melted by the high heat of the printhead. Pressure is applied by forcing in more plastic, causing some of the liquid plastic to extrude through a small nozzle that ranges from .2-.5 mm in size.

A print from an FDM printer begins with a single layer of plastic applied very thinly to the print bed, the nozzle moving across the print bed and depositing said plastic in the shape of the object it’s creating. This initial layer is the base layer of the object, and the second layer will be deposited directly on top of the first, and will fuse due to the properties of the plastic involved. Once the second layer is completed, the third, fourth, and so on will follow, building the object over time along the Z axis. You can think of layer height as the equivalent of the DPI of a printed page. It’s the resolution of the object in the vertical dimension, and the smaller the layer height the smoother the final product will appear. It will also take significantly longer to print, since as you lower the layer height, you’re adding layers to the overall build.

For example, lets imagine you’re printing a 5 cm tall cube. If you print that cube at what would be considered a fairly rough layer height of .3mm, you’ll end up printing a total of 167 layers. If you printed that same cube at a fine resolution (for most printers around .1mm) then you’d end up printing 500 layers, tripling the number of overall layers and the time necessary to print the object.  

Because FDM printers rely on building objects vertically in the open air, they have issues with specific geometries of objects, If you imagine an object being printed slowly from the bottom up, if the object has a significant overhang or free-hanging part like a wide doorway or something like a stalactite, it won’t be printable without supports on an FDM printer.

All FDM printer software has built in the ability to include supports for printing, when issues like this arise. Printing an object with supports means that the software builds in vertical towers whose only purpose is to give the object a structure upon which to print. The best case for a support structure is that it would be easily removable from the rest of the model, either by just peeling them apart or in a slightly more advanced process by printing supports in a type of plastic that is soluble in a solvent, while printing the object itself in a plastic that is insoluble. The most popular of these (discussed in next week’s post) is high impact polystyrene or HIPS, which allows a printer with dual extruders to print support structures that can be dissolved off of the actual print.

As with any sort of specialty product, a vocabulary of 3D printing has sprung up , and if you’re new to it, some terms are inscrutable without research. One example would be the two types of extruder setups found on FDM printers. The extruder is the part of the FDM printer that forces the plastic filament into the hot-end and through the nozzle onto the build plate. One is simply called a direct extruder, and the other is known as the Bowden extruder. On a direct extruder FDM printer, a motor on the moving print assembly includes the hot-end and the nozzle, and the motor pulls filament off the spool and drives it directly into the hot-end. The majority of FDM printers have a direct drive extruder. The Bowden extruder removes the motor assembly from the hot-end and nozzle, and takes it off the moving printhead altogether. In a Bowden setup, the motor pushes the filament from the spool through a tube connected to the hot-end and nozzle. The advantage to the Bowden is that it significantly reduces the weight of the moving print assembly, which means that it can move more quickly and can change directions without serious jitter problems. The disadvantage is that it is, in some sense, pushing a rope, and the more flexible the filament is the harder time the Bowden setup will have with pushing it into the print assembly.

A few other good-to-know FDM  terms (and some of these I’ve already used without explaining, forgive me, dear reader) are: hot-end, build plate, nozzle, spool. The hot-end of an FDM printer is the metal piece with the heating element inside that melts the filament. Usually they are made of some form of non-reactive metal, such as aluminum, brass, or stainless steel. The nozzle is the very small diameter (.2-.5mm) that the melted plastic is forced through under pressure on its way to the build plate. There is a relationship between the nozzle diameter and the possible layer height of the output from the printer. Because you are extruding tubes of melted plastic, and they need to be pressed together in order to fuse, the layer height can’t be any larger than the diameter of the nozzle. If it were, you would be extruding into thin air, without the new layer pressing into the old layer. To help visualize this, if the width of your extruded plastic is .3mm, and you attempt to print at a .4mm layer height, there’s .1mm between the plastic and the layer below it...not good. In practice, a good rule of thumb is that the maximum layer height is somewhere between 75-80%  of the nozzle diameter. So for a .4mm diameter nozzle, your maximum layer height would be around .3mm. Generally speaking, the goal is to have lower and lower print heights, as that makes for a smoother and smoother final product. But for rough prints, or demos, having a higher maximum layer height can speed up prints tremendously.


The last couple of FDM specific pieces of terminology are build plate and spool. Spool is easy, as it’s the way that filament is generally purchased and used. A typical purchase of ABS or PLA would be a kilogram (2.2 pounds) of plastic, wrapped onto a plastic or cardboard spool which hangs on the printer and plays out filament as needed. In an FDM printer, the build plate is the surface upon which the plastic is extruded. The specifics vary widely, but fall into a few basic categories, the primary of which is heated or non-heated. A heated build plate adds cost to the printer, but is absolutely necessary for printing certain types of filament (ABS, Nylon, and more).

Another aspect of the build plate is its composition, and whether you print directly onto the plate, some covering such as tape, or a glue or other adhesive. Heated build plates are usually made of either aluminum or tempered glass, although occasionally stainless steel shows up. Unheated build plates can be composed of the same things, as well as acrylic. The important thing with build plate construction is that you want something that will not warp or deform over time, since if the plate itself isn’t flat, it’s impossible to level it appropriately to the print heads. Glass is a very popular build plate material for this reason, although many FDM printers ship with alumninum plates that are then covered with a replaceable printing surface of some kind, most commonly PET tape or Kapton tape for a heated bed, or painter’s tape for a non-heated bed.

The price points for FDM printers are typically determined by size, more specifically print volume or the size of the print bed, and a variety of upgrades that makes feasible specific kinds of printing or the use of specific plastics. Print bed sizes range from very small (no more than 3 inches by 3 inches or so) to massive (over 12 inches by 12 inches). The print volume determines the maximum size of a single object that you can print, or conversely the number of smaller objects that you could print at the same time. Printing larger objects is also more difficult, because as you print larger things, there’s more opportunity for a small error to creep into the print due any number of common 3D printer issues.

Share your cutting edge practice!

OITP, LITA seek nominations for cutting-edge technology practices

Washington, D.C. – The American Library Association (ALA) Office for Information Technology Policy (OITP) and the Library & Information Technology Association (LITA) are soliciting nominations for best library practices using cutting-edge technology.

“Cutting edge” refers to tested and successful implementations of technological advancements used in services such as:

  • Improvements in traditional services and processes by inventing/re-inventing/twisting technology
  • Introduction of new, innovative services that are flexible and responsive to community needs
  • Methods for connecting libraries to their communities
  • Funding initiatives or organizational models that ensure library information technology will remain current
Nominations may be may for work in any of the following sample areas:
  • Application development (apps)
  • Architecture and design
  • Circulation (sorting, remote distribution, materials handling, delivery mechanisms)
  • Collections
  • Community services (to include equity, outreach, programming and assessment of services)
  • Curation
  • E-resources management services
  • Instruction/information literacy
  • Knowledge creation
  • Open source
  • Pathfinders
  • Patron services (to include self-services and privacy protection)
  • Participatory services (e.g., student-created content, community polling, wikis)
  • Professional development
  • Readers’ advisory
  • Reference services
  • Staff management (use of self-scheduling, recruitment and evaluation)
  • Unique missions
  • User interface
  • Web services
  • Other

Nominations should include the following:

  • A description of the project/service
  • An explanation of how the service/procedure is cutting-edge
  • Information about the evolution of the project (identification of need, why it is novel, funding sources/options, challenges, how success was measured, and recommendations)

Applicants may also submit supporting materials in a variety of media, such as Flickr, YouTube, video, audio, blogs, etc.).


  • Must involve the use of technology
  • Must be a novel idea or implementation of a service
  • Must be able to be documented for replication
  • Must be for a library that has been involved in the development of the service or product (can’t just buy something off the shelf) or has enhanced the product for added value

A joint committee of members from the Subcommittee on America’s Libraries for the 21st Century and LITA will review all nominations and may conduct selected interviews or site visits to identify those libraries that are truly offering a best practice or most innovative service.  Libraries or library service areas will be publicized via the OITP and LITA websites, as well as highlighted through ALA publications and programs at the ALA Annual Conference in 2012. 

The nomination form (.docx) is available online and may be emailed or faxed to Larra Clark at or fax 202-628-8419.

Learn more about the program and past winners on the OITP website.


ISTE Conference! Join us in Philadelphia

Connected Learning. Connected World.

Check out ISTE at a glance 


Maker Spaces for the Financially Challenged 3 Replies

Started by Larry Persinger. Last reply by Holly Esterline Oct 29.

Brand New Librarian...Help! 12 Replies

Started by Erin Graff. Last reply by Cindie Gaither Aug 29.

Fines in Secondary 6 Replies

Started by Suzanna L. Panter. Last reply by Cindie Gaither Aug 29.

Close Reading of Media Texts

Started by Frank W. Baker Aug 24.

Lesson plan resources for pre-k through 6th grade - New Librarian 2 Replies

Started by Amy Skrovan. Last reply by Shawn Aug 4.

What's new in your September? 25 Replies

Started by Joyce Valenza. Last reply by Deanna Seigler Aug 1.

What reference books do you feel are necessary in an elementary library? 5 Replies

Started by Shelly Haskell. Last reply by Elisabeth LeBris Jul 30.

Borrowing Books for Summer Vacation 3 Replies

Started by Lisa B.. Last reply by Deanna Seigler Jul 9.

School library symposium in Bogota, Colombia

Started by adriana carrillo Jun 3.

music collection 1 Reply

Started by Erin Graff. Last reply by Amanda Tagmire May 20.


  • Add Videos
  • View All

Network news

Don't miss the new wiki Elementary Library Routines. Share your best ideas and learn from others in your tribe!

Blog Posts

Crash (Visions!) by Lisa McMann

Crash (Visions, #1) Crash by Lisa McMann

My rating: 5 of 5 stars

I couldn't put down the Wake Trilogy and after reading Crash, I am thinking I will be gobbling these Visions books too!… Continue

Posted by BJ Neary on December 14, 2014 at 5:49pm

Blue Lily, Lily Blue by Maggie Stiefvater

Blue Lily, Lily Blue (The Raven Cycle, #3) Blue Lily, Lily Blue by Maggie Stiefvater

My rating: 5 of 5 stars

I am so glad this was not the end of The Raven Cycle books! There… Continue

Posted by BJ Neary on December 9, 2014 at 8:31pm

Grasshopper Jungle by Andrew Smith

Grasshopper Jungle Grasshopper Jungle by Andrew Smith

My rating: 5 of 5 stars

This book was a very wild ride! Andrew Smith's description of the end of the… Continue

Posted by BJ Neary on November 30, 2014 at 5:01pm

She is Not Invisible by Marcus Sedgwick

She Is Not Invisible She Is Not Invisible by Marcus Sedgwick

My rating: 5 of 5 stars

Marcus Sedgwick is such a superb author when it comes to suspense!… Continue

Posted by BJ Neary on November 19, 2014 at 7:58pm

Killer Instinct by Jennifer Lynn Barnes

Killer Instinct (The Naturals, #2) Killer Instinct by Jennifer Lynn Barnes

My rating: 5 of 5 stars

If you love mysteries - you will enjoy the suspense in the 2nd book of The… Continue

Posted by BJ Neary on November 17, 2014 at 9:01pm

Doing Right by Patrick Jones

Doing Right Doing Right by Patrick Jones

My rating: 5 of 5 stars

Thank you to NetGalley and Lerner Publishing for an awesome read that teens and reluctant readers…


Posted by BJ Neary on November 13, 2014 at 7:19pm


  • Add Photos
  • View All

Latest Activity

BJ Neary posted a blog post

Crash (Visions!) by Lisa McMann

Crash by Lisa McMannMy rating: 5 of 5 starsI couldn't put down the Wake Trilogy and after reading Crash, I am thinking I will be gobbling these Visions books too! Jules and her family own a pizzeria, work constantly, has no life and…See More
Neil Brewer posted a status
"Here's my book - complete!…"
Beverly ONeal updated their profile
Dec 10
BJ Neary posted a blog post

Blue Lily, Lily Blue by Maggie Stiefvater

Blue Lily, Lily Blue by Maggie StiefvaterMy rating: 5 of 5 starsI am so glad this was not the end of The Raven Cycle books! There is so much more you learn about the main characters- Blue, Gansey,…See More
Dec 9
Karen Radz updated their profile
Dec 9
Profile Iconadriana carrillo, Cynthia and Andi Fansher are attending BJ Neary's event

Edutech Open Mike Smackdown at TL Virtual Cafe

December 8, 2014 from 8pm to 9pm
Edutech Open Mic Smackdownwith Dr. Joyce Valenza and YOU!  with Gwyneth Jones & Librarian Tiff moderating.December 8th 8pm EasternFor resources, chat & webinar archive visit theSession Wikipage Participant LinkWhile you're there please consider adding to our crowdsourced…See More
Dec 8
Kimberly Howell-Martin commented on BJ Neary's event Edutech Open Mike Smackdown
"Looking forward to this evening!"
Dec 8
Profile IconToni Olivieri-Barton and Linda L. Sympson might attend BJ Neary's event

Edutech Open Mike Smackdown at TL Virtual Cafe

December 8, 2014 from 8pm to 9pm
Edutech Open Mic Smackdownwith Dr. Joyce Valenza and YOU!  with Gwyneth Jones & Librarian Tiff moderating.December 8th 8pm EasternFor resources, chat & webinar archive visit theSession Wikipage Participant LinkWhile you're there please consider adding to our crowdsourced…See More
Dec 8


Active Conversations



    You are disconnected from chat. Connect to join the chat.

    Suspended From Chat

    Sign up to chat on TLNing.

    Sign Up


    Twitter feeds

    TL Scoop.its

    Teacher Librarians of the 21st Century Curated by Mrs. N Ideas and Resources for the 21st Century Teacher Librarian

    Libraries as Sites of Enchantment, Participatory Culture, and Learning Curated by Buffy J. Hamilton Ideas and resources to develop the concept of libraries as sites of participatory culture and learning

    Personal Learning Networks for Librarians  Curated by Donna Watt

    Staying ahead of the game, managing your own professional development, joining the dots

    SchoolLibrariesTeacherLibrarians Curated by Joyce Valenza News for teacher librarians

    What is a teacher librarian?  Curated by Tania Sheko Defining the role of teacher librarians for those who think we just look after books

    Teacher librarians and transliteracy Curated by Sue Krust Explore the evolving role of the teacher librarian

    Teacher-Librarian Curated by Librarian@HOPE Best sites and resources on the web for teacher-librarians

    ResearChameleon on School Libraries Curated by Kathy Malatesta Teaching, mentoring & leading in today’s school libraries

    Student Learning through School Libraries Curated by lyn_hay Building evidence of impact through research and professional practice

    SCIS  Curated by SCIS News and resources about school libraries

    Educational Technology and Libraries Curated by Kim Tairi In libraries we teach, we learn and many of us are early adopters of technology. This is your scoop on those things.

    21st Century Libraries Curated by Dr. Steve Matthews all things 21st Century library related

    Join our Diigo Group! VIsit TL Daily!

    Coming soon



    #tlchat: #tlchat your tweets!



    © 2014   Created by Joyce Valenza.   Powered by

    Badges  |  Report an Issue  |  Terms of Service